A NOTE ON QUASI-TOPOLOGICAL SPACES

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on quasi irresolute topological groups

In this study, we investigate the further properties of quasi irresolute topological groups defined in [20]. We show that if a group homomorphism f between quasi irresolute topological groups is irresolute at $e_G$, then $f$ is irresolute on $G$. Later we prove that in a semi-connected quasi irresolute topological group $(G,*,tau )$, if $V$ is any symmetric semi-open neighborhood of $e_G$, then...

متن کامل

A note on soft topological spaces

This paper demonstrates the redundancies concerning the increasing popular ``soft set" approaches to general topologies. It is shown that there is a complement preserving isomorphism (preserving arbitrary $widetilde{bigcup}$ and arbitrary $widetilde{bigcap}$) between the lattice ($mathcal{ST}_E(X,E),widetilde{subset}$) of all soft sets on $X$ with the whole parameter set $E$ as domains and the ...

متن کامل

a note on quasi irresolute topological groups

in this study, we investigate the further properties of quasi irresolute topological groupsde ned in [20]. we show that if a group homomorphism f between quasi irresolute topologicalgroups is irresolute at eg, then f is irresolute on g. later we prove that in a semi-connectedquasi irresolute topological group (g; ; ), if v is any symmetric semi-open neighborhood ofeg, then g is generated by v...

متن کامل

A Note on Linear Topological Spaces*

A space T is called a linear topological space if (1) T forms a linear f space under operations x+y and ax, where x,yeT and a is a real number, (2) T is a Hausdorff topological space,J (3) the fundamental operations x+y and ax are continuous with respect to the Hausdorff topology. The study § of such spaces was begun by A. Kolmogoroff (cf. [4]. Kolmogoroff's definition of a linear topological s...

متن کامل

A Note on Quasi-metric Spaces

In the present note it is shown that a very useful generalized distance function may be defined in certain of these spaces. Clearly, any such distance function must be an asymmetric one. W. A. Wilson considered the definition of asymmetric distances in certain spaces which satisfy stronger separation axioms than K. I t is shown here that a slight modification of one of the axioms in [W] allows ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Honam Mathematical Journal

سال: 2011

ISSN: 1225-293X

DOI: 10.5831/hmj.2011.33.1.011