A NOTE ON QUASI-TOPOLOGICAL SPACES
نویسندگان
چکیده
منابع مشابه
A note on quasi irresolute topological groups
In this study, we investigate the further properties of quasi irresolute topological groups defined in [20]. We show that if a group homomorphism f between quasi irresolute topological groups is irresolute at $e_G$, then $f$ is irresolute on $G$. Later we prove that in a semi-connected quasi irresolute topological group $(G,*,tau )$, if $V$ is any symmetric semi-open neighborhood of $e_G$, then...
متن کاملA note on soft topological spaces
This paper demonstrates the redundancies concerning the increasing popular ``soft set" approaches to general topologies. It is shown that there is a complement preserving isomorphism (preserving arbitrary $widetilde{bigcup}$ and arbitrary $widetilde{bigcap}$) between the lattice ($mathcal{ST}_E(X,E),widetilde{subset}$) of all soft sets on $X$ with the whole parameter set $E$ as domains and the ...
متن کاملa note on quasi irresolute topological groups
in this study, we investigate the further properties of quasi irresolute topological groupsdened in [20]. we show that if a group homomorphism f between quasi irresolute topologicalgroups is irresolute at eg, then f is irresolute on g. later we prove that in a semi-connectedquasi irresolute topological group (g; ; ), if v is any symmetric semi-open neighborhood ofeg, then g is generated by v...
متن کاملA Note on Linear Topological Spaces*
A space T is called a linear topological space if (1) T forms a linear f space under operations x+y and ax, where x,yeT and a is a real number, (2) T is a Hausdorff topological space,J (3) the fundamental operations x+y and ax are continuous with respect to the Hausdorff topology. The study § of such spaces was begun by A. Kolmogoroff (cf. [4]. Kolmogoroff's definition of a linear topological s...
متن کاملA Note on Quasi-metric Spaces
In the present note it is shown that a very useful generalized distance function may be defined in certain of these spaces. Clearly, any such distance function must be an asymmetric one. W. A. Wilson considered the definition of asymmetric distances in certain spaces which satisfy stronger separation axioms than K. I t is shown here that a slight modification of one of the axioms in [W] allows ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Honam Mathematical Journal
سال: 2011
ISSN: 1225-293X
DOI: 10.5831/hmj.2011.33.1.011